Code: 20CS3501

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

SOFTWARE ENGINEERING (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Explain about changing nature of software in detail.	L2	CO1	7			
	b)	Identify a specific scenario where incremental process model can be applied and justify with reasons.	L2	CO2	7			
OR								
2	a)	Discuss various types of software myths with realities.	L2	CO1	7 M			
	b)	Select appropriate process model to develop a project using Agile methodology.	L3	CO2	7 M			
UNIT-II								
3	a)	Demonstrate various non-functional	L3	CO2	7 M			
		requirements to establish the ground work						
	Page 1 of 3							

		for the understanding of software requirements.			
	b)	Illustrate with an example how use case scenarios help in requirements elicitation.	L3	CO2	7 M
	I	OR		11	
4	a)	Explain in detail about Agile requirements Elicitation techniques.	L2	CO2	7 M
	b)	Demonstrate Scenario based modeling for Requirements Analysis.	L3	CO2	7 M
		UNIT-III			
5	a)	Identify various software quality attributes and guidelines to be followed in Design process.	L2	CO3	7 M
	b)	Explain in detail Architectural and Interface design elements in design modeling.	L2	CO3	7 M
	I	OR		11	
6	a)	Explain various design concepts in detail.	L2	CO4	7 M
	b)	Explain the concept refining the Architecture into Components.	L2	CO4	7 M
UNIT-IV					
7	a)	Discriminate suitable testing strategies for conventional software.	L3	CO4	7 M
	b)	Define Debugging and explain in detail the art of debugging.	L2	CO4	7 M

OR						
8	a)	Illustrate the basic path testing with an example.	L2	CO4	7 M	
	b)	Compare and contrast White box testing and Black box testing techniques.	L3	CO4	7 M	
UNIT-V						
9	a)	Interpret various risk projection steps and specific projection activities for any two critical risks in software development.	L3	CO3	7 M	
	b)	Discuss the major SQA tasks to be followed in order to achieve Software Quality Assurance.	L3	CO3	7 M	
		OR				
10	a)	Prepare RMMM plan for refining the risks.	L4	CO3	7 M	
	b)	Illustrate in detail about ISO9000 quality standards.	L3	CO3	7 M	